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Snapshots of the retarded interaction of charge
carriers with ultrafast fluctuations in cuprates
S. Dal Conte1*†, L. Vidmar2,3*†, D. Golež3, M. Mierzejewski4, G. Soavi1, S. Peli5,6, F. Banfi5,7,
G. Ferrini5,7, R. Comin8,9, B. M. Ludbrook8,9, L. Chauviere8,9,10, N. D. Zhigadlo11, H. Eisaki12, M. Greven13,
S. Lupi14, A. Damascelli8,9, D. Brida1,15, M. Capone16, J. Bonča3,17, G. Cerullo1 and C. Giannetti5,7*
One of the pivotal questions in the physics of high-temperature superconductors is whether the low-energy dynamics of the
charge carriers ismediated by bosonswith a characteristic timescale. This issue has remained elusive as electronic correlations
are expected to greatly accelerate the electron–boson scattering processes, confining them to the very femtosecond timescale
that is hard to access even with state-of-the-art ultrafast techniques. Here we simultaneously push the time resolution and
frequency range of transient reflectivity measurements up to an unprecedented level, enabling us to directly observe the
⇠16 fs build-up of the e�ective electron–boson interaction in hole-doped copper oxides. This extremely fast timescale is in
agreement with numerical calculations based on the t–J model and the repulsive Hubbard model, in which the relaxation of
the photo-excited charges is achieved via inelastic scattering with short-range antiferromagnetic excitations.

A fter almost 30 years of intensive experimental and theoretical
e�orts to understand the origin of high-temperature
superconductivity in copper oxides, a consensus about the

microscopic process responsible for the superconducting pairing
is still lacking. The large Coulomb repulsion U � 1 eV between
two electrons occupying the same lattice site is believed to have
fundamental consequences for the normal state of these systems1,
and it is not clear whether a BCS-like bosonic glue that mediates
the electron interactions and eventually leads to pairing can
still be defined2–4. The fundamental issue can be reduced to
the question whether the electronic interactions are essentially
unmediated and instantaneous, or whether the low-energy physics,
including superconductivity, can be e�ectively described in terms
of interactions among the fermionic charge carriers mediated by
the exchange of bosons. The problem can be rationalized by
considering the Hubbard model, in which the instantaneous virtual
hopping of holes into already occupied sites (with an energy
cost of U ) inherently favours an antiferromagnetic (AF) coupling
J = 4t 2h/U between neighbouring sites, where th is the nearest-
neighbour hopping energy. As a consequence, antiferromagnetic
fluctuations with a high-energy cuto� of 2J ⌧U naturally emerge
as a candidate5 formediating the low-energy electronic interactions,
on a characteristic retarded timescale of the order of h̄/2J .

In principle, time-resolved optical spectroscopy6 may be used
to prove the existence of an e�ective retarded boson-mediated

interaction, provided that the temporal resolution is of the order
of the inverse bosonic-fluctuation scale (for example, h̄/2J for
AF fluctuations) and the optical properties are probed over
a su�ciently broad frequency range, to extract the dynamics
of the electron–boson coupling. Recent advances in ultrafast
optical spectroscopy have succeeded in separately fulfilling
these requirements. For example, high-temporal-resolution
(<15 fs) experiments7,8 have been carried out to investigate the
ultrafast electron dynamics in copper oxides. Unfortunately, these
experiments were typically confined to a very narrow range of
visible frequencies, which made it di�cult to determine the origin
of the measured optical signal. In contrast, the ⇠100 fs temporal
resolution prevented recent broadband (0.5–2 eV) experiments9
from directly investigating the possible retardation e�ects of the
ultrafast electron–boson interaction.

Here we overcome these limitations by developing a transient
reflectivity experiment10 that combines the use of extremely short
light pulses (9–13 fs) with a broad accessible spectral window,
extending from the infrared to the visible region (0.75–2.4 eV)
(see Methods). The qualitative idea of the experiment is to use an
ultrashort light pulse to impulsively increase the kinetic energy of a
small fraction of the charge carriers (photo-excited holes) in doped
cuprates. A second broadband pulse probes the instantaneous
optical scattering rate by inducing boson-assisted optical transitions
of the charge carriers in the conduction band. As long as the number
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Figure 1 | Equilibrium and non-equilibrium optical properties of Y-Bi2212UD at T=300K. a, The normal state reflectivity (black line) of the Y-Bi2212UD
crystal is reported. The dashed line represents the reflectivity calculated by increasing the electron–boson scattering rate, �1, in the extended Drude
model. The blue (red) area represents the spectral region in which a negative (positive) reflectivity variation is expected when ��1 >0. b, The ultrafast
dynamics of �R/R(!, t), measured across the isosbestic point !̃, is reported. The measurements have been performed with an incident pump fluence of
0.7 mJ cm�2. The linearity of the optical response has been checked in the 0.2–2 mJ cm�2 fluence range. c, The maximum reflectivity variation at fixed
delay, that is, �R(!, t=40 fs)/Req(!), is reported as orange dots. Already on this ultrafast timescale the signal can be accurately reproduced by exclusively
increasing �1 in the EDM (black line). d, Two di�erent time traces at h̄!= 1.3 eV (red dots) and h̄!= 1 eV (blue dots) are displayed. The black line is the fit
to the data of the function F(t)=(1�exp(� t/⌧r))⇥(I1 exp(� t/⌧1)+ I2 exp(� t/⌧2)) convolved with a Gaussian pulse accounting for the experimental
time resolution. The dark-grey line is the measured cross-correlation trace between the pump and probe pulses, which sets the time resolution to 19 ± 2 fs.
The temporal width of the cross-correlation is monitored before and after each measurement. The time t=0 is defined at the maximum of the pump–probe
cross-correlation. The vertical dashed line highlights the time delay (⇠40 fs), with respect to t=0, at which the maximal ��1 variation is measured.
e, Picosecond dynamics of the 1.3 eV time trace (blue dots). f, Temperature dependence of ⌧r. The error bars have been obtained from the fitting of the
function F(t) to the time traces reported in Supplementary Fig. 2.

of photo-excited holes is small relative to the intrinsic doping of
the system (see Methods), we can assume that we are probing the
average scattering rate experienced by the holes which have not been
directly excited by the pump pulse. Because the optical scattering
rate is proportional to the energy stored in the bosonic fluctuations,
we can monitor the time needed to complete the energy exchange
from the photo-excited carriers to the bosonic bath.

Quantitatively, the dynamics of the optical scattering rate after
the impulsive excitation of a prototypical superconducting cuprate
can be retrieved by probing the damping of the infrared plasma edge.
This is easily shown by inspection of the room-temperature equilib-
rium reflectivity, Req(!), of a Bi2Sr2Y0.08Ca0.92Cu2O8+� (Y-Bi2212UD)
crystal11. The doping level (hole concentration p'0.13, Tc '89K) is
close to optimal (p'0.16,Tc '96K), andwe estimate the opening of
the pseudogap to occur at T ⇤ '240K (ref. 12). As shown in Fig. 1a,
the infrared region is dominated by a broad plasma edge, which
can be e�ectively reproduced by an extended Drude model (EDM;
ref. 13) described by 4⇡�D(!)=!2

p/[� (!,T )� i!(1+ �̃(!,T ))],
where �D(!) is the EDM optical conductivity, !p the plasma fre-
quency and 1+ �̃ the renormalization factor of the e�ective mass
of the carriers. The optical scattering rate, � (!, T ), controls the
damping of the plasma edge and it is, in principle, a function
of the frequency and temperature, as a consequence of the cou-
pling to bosonic fluctuations whose occupation number is regulated
by Bose–Einstein statistics13. Nevertheless, in the energy window
probed in the experiment, � (!,T ) varies by less than 10% as a func-
tion of frequency (see Supplementary Information), therefore we
can safely discuss the time-resolved results considering its asymp-
totic (! ! 1) value, that is, �1(T ). If the total scattering rate is
enhanced (��1 > 0) by any e�ect, this leads to a further damping
of the edge and to the evolution of Req(!) shown in Fig. 1a. An
isosbestic point is found at the frequency !̃'1.1 eV, across which
the reflectivity variation changes from negative to positive.

In Fig. 1b we report the dynamics of the relative reflectivity
variation, �R(!, t)/Req(!), measured at T = 300K on Y-Bi2212UD
as a function of the delay t between the pump and probe pulses.
The sub-10 fs pump pulse is set to 2.1 eV central energy, to avoid
the spurious signals measured when pumping below the Drude
absorption edge14. The probe spans the energy range across !̃,
which is more sensitive to the possible variations of �1(T ), as
already shown in Fig. 1a. One key result of this experiment is that,
for each given time delay t from the very first femtoseconds up
to the picosecond timescale, �R(!, t)/Req(!) can be reproduced
very well by exclusively increasing �1. This is shown in Fig. 1c,
which shows the relative reflectivity variation at the fixed delay time
t=40 fs. The signal is accurately reproduced over the entire acces-
sible frequency range by assuming a small increment ��1—that
is, �R(!, t)/Req(!) = [@R(!)/@� ] ��1(t)/Req(!). In other words,
already on the sub-100 fs timescale the variation of the optical prop-
erties is dominated by the change of the electron–boson scattering
rate, as a consequence of the ultrafast increase in the average energy
stored in the boson bath. We point out that a dominant direct
interaction—that is, unmediated by the boson bath—of the photo-
excited holes with the other existing holes would lead to an increase
of the e�ective electronic temperature, Te, decoupled from the bo-
son temperature, Tb 'T . However, an increase of Te alone would
provide a qualitatively di�erent �R(!, t)/Req(!) signal, as discussed
in ref. 9 (see also Supplementary Information). Bringing together all
these observations, we can assume a direct proportionality between
the reflectivity variation at a fixed frequency and the electron–boson
scattering rate change, that is, �R(t)/��1(t).

The inherent timescale of the electron–boson interaction can be
thus accessed by plotting the �R(t)/Req time traces. In particular,
in Fig. 1d we report two di�erent time traces across the isosbestic
frequency !̃, at h̄!=1.3 and 1 eV.Although opposite in sign, in both
cases themaximumvariation of �R(t)/Req ismeasured at a non-zero
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delay time (⇠40 fs) from the excitation, as shown in Fig. 1d. The
build-up time of the �R(t)/Req signal (⌧r =16±3 fs) is extracted by
fitting the dynamics with the simple function (1� exp(�t/⌧r))⇥
(I1 exp(�t/⌧1) + I2 exp(�t/⌧2)) convolved with a Gaussian pulse
accounting for the experimental resolution (pump–probe cross-
correlation with a full-width at half-maximum of 19±2 fs), which
has been carefully checked through the cross frequency-resolved
optical gatingmethod (see Supplementary Information). This result
demonstrates that the energy exchange between the photo-excited
holes and the boson bath, which ultimately leads to the measured
increase of �1(t), builds up with a non-zero time constant of the
order of 15–20 fs. The two further decay scales (⌧1 ⇠ 90 fs and
⌧2 ⇠ 1 ps), measured in the �R(t)/Req signal shown in Fig. 1e,
are related to the subsequent coupling with the optical buckling
and breathing phonons (⌧1) and with the rest of the lattice
vibrations (⌧2; refs 7,9,15). Remarkably, any time trace in the
whole probed frequency range exhibits the same values of ⌧r, ⌧1
and ⌧2. Similar results are obtained by performing a quantitative
and global analysis16,17 through singular value decomposition (see
Supplementary Information), which provides the global dynamics
��1(t) under the form of the first temporal eigenvector.

The present high-time-resolution transient reflectivity experi-
ment demonstrates that the electron dynamics in the hole-doped
cuprates can be captured by an e�ective model in which the charge
carriers exchange energy with bosonic excitations on a very fast
(but non-zero) timescale. This conclusion is based solely on the
observation that �R(t) is proportional to ��1(t)—that is, to the
total energy stored in the boson bath—and does not necessarily
require an e�ective thermalization of the charge carriers through
direct carrier–carrier collisions18.

Considering that the elementary time (h̄/th ⇠ 2 fs) associated
with the Cu–O–Cu hole-hopping process inevitably leads to the
creation of local AF excitations, AF fluctuations are a candidate as
the dominant mediators of the hole interactions on this ultrafast
timescale. As further support of our assignment, neutron and X-ray
scattering experiments19–24 have revealed a rich magnetic dynamics
in hole-doped cuprates, characterized by resonance modes at
50–60meV and a very broad spectrum with a cuto� of the order of
the bandwidth 2J '240meV found for the AF parent compounds.
Similar bosonic-fluctuation spectra have been extracted from
equilibrium optical spectroscopy13. On the other hand, we can
rule out a possible photo-induced coherent rearrangement of the
oxygen atoms, which has been demonstrated on the 18 fs timescale25
because no significant variation of the charge transfer excitations
(⇠2 eV), which are the most sensitive to a rearrangement of the
oxygen orbitals, is observed (see Supplementary Information) and
no coherent oscillation is detected in the �R(!, t)/Req(!) signal at
any wavelength. Even though a single incoherent scattering process
with optical phonons could be extremely fast, several scattering
processes are necessary to complete the energy transfer to the
phonons, as will be shown later in the case of the conventional
superconductor MgB2. Finally, in the scenario of an ultrafast
coupling between charge carriers and bosonic excitations, such
as AF fluctuations, the dynamics of the energy exchange should
be regulated by the strength of the electron–boson coupling and
the boson energy spectrum. Therefore, the dynamics should be
essentially independent of temperature, at least for temperatures
lower than the typical boson frequency. To verify this hypothesis,
we performed measurements of ⌧r at di�erent base temperatures of
the Y-Bi2212UD sample, the results of which are reported in Fig. 1f.
Within the error bars, a constant value of ⌧r is measured over a broad
temperature range. This result supports the possibility of defining a
unique ultrafast timescale, determined by the nature of the bosonic
mediators of the charge dynamics.

The role of short-range AF correlations as the fastest e�ective
bosons mediating the charge dynamics is corroborated by studying
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Figure 2 | Microscopic calculation of the energy transfer from a
photo-excited hole to local antiferromagnetic bonds through the
out-of-equilibrium t–Jmodel (see Methods for further details). a, Time
evolution of the hole kinetic energy variation, 1Ekin(t). In the main panel we
set J/th =0.3, where th =360 meV represents the hopping amplitude. The
inset shows the range of the characteristic relaxation time ⌧tJ at di�erent
values of J/th, after a finite-size scaling (see Supplementary Information).
b, Snapshots of the relative energy increase of the local antiferromagnetic
bonds 1Es(t,r) on a 9 ⇥ 9 square lattice around the photo-excited hole
(red circle). The thickness of the black segments is proportional to the
energy stored in each bond. The grey dots in a indicate the delay times of
the snapshots in b.

the non-equilibrium dynamics of the photo-excited holes in the
t–J Hamiltonian26,27 (see Methods), which is the minimal model
that fully retains the dynamics at the energy scale J . As the rate
of the photo-excitation of holes in the system is very low (see
Methods), we conjecture that the key relaxation mechanism at
very short times corresponds to the creation of high-energy AF
excitations in the proximity of the photo-excited holes. We model
the photo-excitation of a hole immersed in the AF background by
instantaneously raising its kinetic energy, by 1Ekin(t) = 2 eV. The
relaxation dynamics is calculated by numerically integrating the
time-dependent Schrödinger equation, without any assumption of
quasi-thermal intermediate states, as usually described by e�ective
electronic and bosonic temperatures. The dynamics of 1Ekin(t)
after the quench is reported in Fig. 2a. Although the total energy
remains constant during the time evolution, the observed relaxation
of 1Ekin(t) is compensated by the simultaneous increase of the
energy stored in the AF background. Figure 2b shows snapshots of
the excess antiferromagnetic energy density,1Es(t ,r), in the vicinity
of the photo-excited hole. We note that the excitation process
involves predominantly the neighbouring bonds, demonstrating
that short-range AF correlations are su�cient for describing the
relaxation dynamics. The characteristic relaxation time, ⌧tJ , of the
energy transfer to AF fluctuations is governed by the ratio J/th, as
shown in the inset of Fig. 2a. Setting J/th = 0.3 to a realistic value
and performing a finite-size scaling analysis (see Supplementary
Information), we obtain ⌧tJ ⇠15 fs, which is in excellent quantitative
agreement with the experimental observations. This value is several
times the elementary timescale (h̄/th ⇠2 fs) of a single hopping event
creating a local AF excitation. To complete the energy exchange
process, many events are necessary, each releasing a fraction of J
of energy. Consequently, the maximum number of AF excitations,
which results in the measured increase of ��1(t), is observed when
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the relaxation is completed—that is, with a delay of about 15 fs. This
extremely fast dynamics has been confirmed by very recent non-
equilibrium dynamical mean field theory (DMFT) calculations28.
We remark that the value of ⌧tJ is not significantly altered when the
direct charge–charge interaction between two holes is considered
(see Supplementary Information) by a adding an explicit interaction
term to the t–J Hamiltonian. We stress that, even in the picture of
a boson-mediated relaxation, U is the crucial interaction because it
determines the dynamics through the strength of the ferromagnetic
coupling, J =4t 2h/U . This is further discussed in the Supplementary
Methods by analysing DMFT calculations for the Hubbardmodel at
finite temperature and doping.

Finally, valuable insight into the general relation between the
electron–boson coupling and the dynamics of ��1(t) is provided
by the results obtained on di�erent families of cuprates and on
more conventional superconductors (see Fig. 3). We repeated the
same experiment on optimally doped (La–Bi2201OP, Tc =33K)
and overdoped (La–Bi2201OD, Tc = 19K) single Cu–O layer
Bi2Sr2�xLaxCuO6 crystals, and on slightly overdoped (Tl2201OD,
Tc = 88K) Tl2Ba2CuO6+� crystals. The time necessary to attain
the maximal variation of �1 is non-zero (⌧r = 21± 4 fs for La–
Bi2201OP, ⌧r = 22 ± 4 fs for La–Bi2201OD and ⌧r = 20 ± 4 fs for
Tl2201OD), slightly longer than for Y-Bi2212UD. These results
demonstrate that the coupling to bosonic fluctuations on the
ultrafast timescale is a general property of the normal state of
hole-doped cuprates even at large hole-doping concentrations.
Qualitatively di�erent results are obtained on MgB2, which is
considered the conventional phonon-mediated superconducting
system with the highest critical temperature (Tc = 39K). Here,
the maximum variation of the scattering rate after the impulsive
excitation is significantly delayed (⇠90 fs, as shown in Fig. 3b)
and ⌧r =32±3 fs is measured. This result demonstrates that, in
the systems in which the superconducting pairing is mediated by
high-energy (!0 ⇠70meV) optical phonons29, the electron–phonon
energy exchange process is completed on a timescale that is several
times the inverse energy of the phonons involved. Furthermore,
a single slower exponential decay (⌧1 = 500 fs) is measured in the
�R(!, t) signal of MgB2, corresponding to the energy exchange
with the rest of the lattice. On conventional non-superconducting
metals, such as Cu and Au, time-resolved measurements have been
widely applied30,31, evidencing an electron–phonon coupling on the

order of ⇠600 fs in Au and ⇠1 ps in Cu. Figure 3c summarizes
all the results obtained in both conventional and unconventional
superconductors, demonstrating a universal relation between the
energy of the boson modes mediating the electron interactions in
the normal state and the timescale of the dynamics of the electron–
boson scattering rate after the pump excitation. Intriguingly, the
dependence of the critical temperature of the system on the
experimental ⌧r follows the general and qualitative trend of the
approximate solution of McMillan’s equation32. This fact supports
a direct relation33 (or, at least, a strong statistical correlation)
between the measured 1/⌧r and the total coupling constant
�b = 2

R
5(�)/�d�, where 5(�) is the coupling function to

antiferromagnetic fluctuations (I 2�(�)) for copper oxides and to
phonons (↵2F(�)) for MgB2 and metals.

Methods
Experimental set-up. A Ti:sapphire amplifier (Clark-MXR model CPA-1)
delivers a train of pulses at a 1 kHz repetition rate with a duration of 150 fs at a
central wavelength of 780 nm and is used to simultaneously drive three
non-collinear optical parametric amplifiers (NOPAs) operating in di�erent
frequency intervals. All NOPAs are seeded by a white light continuum (WLC)
generated in a sapphire plate. The first NOPA (NOPA1) is pumped by the
fundamental wavelength and is amplified by fulfilling a quasi-phase-matching
condition in a periodically poled stoichiometric LiTaO3 (PPSLT) crystal. The
signal generated in this process covers a spectral range between 1 µm (1.24 eV)
and 1.5 µm (0.83 eV) and is temporally compressed to a nearly transform-limited
pulse duration (8.5 fs) by a deformable-mirror-based pulse shaper34. The second
NOPA (NOPA2) is pumped by the second harmonic and is amplified in a
beta-barium borate (BBO) crystal pulses with a spectral content between 820 nm
(1.5 eV) and 1,050 nm (1.2 eV), which are compressed to a nearly
transform-limited 13 fs duration by a pair of fused silica prisms. Both these
NOPAs serve to probe the transient response of the sample and are synchronized
with a third NOPA (NOPA3), pumped by the second harmonic and using BBO,
which initiates the dynamics. The spectrum of NOPA3 spans a frequency range
between 510 nm (2.4 eV) and 700 nm (1.8 eV) and it is compressed to a 7 fs
duration by multiple reflections between a pair of chirped mirrors, giving an
overall temporal resolution of the pump–probe set-up below 19 fs. The time delay
between pump and probe is adjusted by a motorized delay stage and both the
beams are focused on the sample by a spherical mirror in a quasi-collinear
geometry. The spectra of the NOPA1 and NOPA2 probes are detected
respectively by InGaAs and Si spectrometers working at the full 1 kHz laser
repetition rate. By recording the reflected probe spectra at di�erent temporal
delays t with and without pump excitation, we measure the di�erential
reflectivity: �R(!, t)/Req(!)=[R(!, t)�Req(!)]/Req(!). The low-temperature
measurements have been performed in a cryostat equipped with a very thin
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(200 µm) fused silica optical window, to avoid any significant temporal
broadening of the pump and probe pulses.

Samples. The Y-substituted Bi2212 single crystals were grown11 in an image
furnace using the travelling solvent floating-zone technique with a non-zero Y
content to maximize Tc. The underdoped samples were annealed at 550 �C for 12
days in a vacuum-sealed glass ampoule with copper metal inside. All the
La–Bi2201 crystals were grown using the floating-zone technique, and
characterized as described elsewhere35. Tl2201OD single crystals were grown36

using a copper-rich self-flux method, with stoichiometry Tl1.88(1)Ba2Cu1.11(2)O6+�

corresponding to Cu substitution on the Tl site, thus away from the CuO2 planes.
High-quality MgB2 single crystals were grown using the high-pressure cubic
anvil technique37.

t–J model out of equilibrium. We investigate the ultrafast energy exchange
between doped fermionic carriers (holes) and short-range antiferromagnetic
fluctuations within the t–J model on a square lattice,

HtJ =�th
X

hiji,�
(c̃†

i,� c̃j,� ei�i,j(t) +H.c.)+
X

hiji
J
✓
Si ·Sj �

1
4
ñiñj

◆
(1)

where c̃i,� =ci,� (1�ni,�� ) is a projected fermion operator, th represents the
nearest-neighbour overlap integral, the sum hiji runs over pairs of nearest
neighbours, J is the antiferromagnetic exchange energy, Si is the spin vector
operator and ñi =ni," +ni,# �2ni,"ni,# is a projected electron number operator.
The system is threaded by a time-dependent flux �i,j(t), which induces the
electric field �@t� i,j(t).

Motivated by the experimental results, we model the dynamics far from
equilibrium under the following two assumptions. First, we mimic the e�ect of an
ultrashort laser pump pulse by instantly increasing the kinetic energy of a doped
carrier, while the chargeless spin degrees of freedom remain unchanged. In the
context of the t–J model in equation (1), we first calculate the ground state with
�i,j =0, then we perform a sudden change (quench) of the phase at time t=0,
describing the �-like pulse of the electric field. Such a phase quench is obtained
by setting �i,i+ex(y) (t)=⇡✓(t), where ex(y) represents the lattice vector in the
x(y)-direction. Second, in a generic situation, promptly after the absorption of
the pump pulse, the kinetic energy of only a fraction of holes (also referred to as
photo-excited holes) is suddenly increased. For optimally doped samples
(p⇠0.16) and a pump pulse with photon energy 2 eV, fluence 700 µJ cm�2 and
penetration depth 170 nm, the doping rate representing photo-excited holes is
rather low, p0 ⇠0.01, assuming that each photo-excited hole absorbs an entire
quantum of light, that is, 2 eV. We therefore study the dynamics of a single
photo-excited hole, assuming that the main relaxation mechanism is represented
by coupling of the photo-excited hole to local antiferromagnetic excitations. As a
consequence of finite chemical and photo doping, the average number of
antiferromagnetic bonds that are available to absorb the excess kinetic energy of a
single photo-excited hole is large but finite. Although our method is limited to
the calculation of single-hole dynamics, we simulate the e�ect of small photo
doping by limiting the propagation of the photo-excited hole to a finite L⇥L
plaquette with L<10.

Because exact diagonalization (ED) is limited to clusters which are too small
to account for the complete relaxation within the experimental conditions
described above, we extend the lattice size by employing diagonalization in a
limited functional space. The latter method was recently successfully applied to
describe non-equilibrium properties of a charge carrier propagating in a local
antiferromagnetic background26,27. The advantage of this method over the
standard ED in the equilibrium regime follows from a systematic construction of
states with distinct configurations of local antiferromagnetic excitations in the
proximity of the hole. In addition, it remains e�cient even when applied to
non-equilibrium systems on short and intermediate timescales, as long as the
antiferromagnetic disturbance caused by the local quench remains within the
boundaries of generated excitations26,27. We first construct the parent state

|'(0)i=ck,� |Néeli

which represents a hole with momentum k, doped into the Néel state. The
functional space38 is then generated by

�
|'(nh)

j i
 

=
h
Hkin +H̃J

inh
|'(0)i,nh =0, . . . ,Nh

where Hkin represents the kinetic energy term of the t–J model and H̃J represents
the spin-flip term of the Heisenberg part of the t–J model (spin-flip denotes
overturned spins with respect to the Néel state; H̃J erases two neighbouring
spin-flips created by the propagating hole). The size of the functional space is
determined by the parameter Nh. In addition, we impose the condition that the
largest distance of a local antiferromagnetic excitation away from the
photo-excited hole, r̃=(Nbox,Nbox), should not exceed Nbox =4, therefore limiting

the spatial extent of antiferromagnetic excitations to a 9⇥9 plaquette. Contrary
to the standard ED, we carry out a finite-size scaling not with respect to the
geometric size of the system, but rather with respect to Nh (see
Supplementary Information).

Applying the Lanczos technique we first compute the ground state |9(t=0)i.
The time evolution |9(t)i=e�iHtJ t/h̄|9(t=0)i is then implemented using the
quenched Hamiltonian. We set the hopping amplitude th =0.360 eV, which
corresponds to the time unit h̄/th =1.83 fs. At each time step �t(th/h̄)⌧1 we
generate the evolution |9(t��t)i! |9(t)i by using the Lanczos basis39. We
measure in Fig. 2a the time-dependent expectation value of the kinetic energy
relative to the initial state, 1Ekin(t)=Ekin(t)�E(0)

kin , where Ekin(t)= hHkin(t)i and
E(0)
kin = hHkin(t<0)i. In Fig. 2b we plot the relative increase of the spin energy on

the antiferromagnetic bond at a distance r away from the photo-excited hole,
1Es(t ,r)=Es(t ,r)�E(0)

s (r), where Es(t ,r)= J hSi+r(t) ·Sj+r(t)i and
E(0)
s (r)= J hSi+r(t<0) ·Sj+r(t<0)i. After the quench, the total energy in the

system remains constant, 1Ekin(t)+
P

r 1Es(t ,r)=const.
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I. SVD ANALYSIS

The Y-Bi2212UD non-equilibrium reflectivity δR(ω,t)
Req(ω) , reported in Fig. 1b of the main text, is obtained by combining

the transient response measured in two spectral windows with laser pulses provided by NOPA1 and NOPA2 (see
Methods). In general, the δR(ω,t)

Req(ω) matrix contains different spectral features and temporal dynamics, which are

characteristic of the physical processes triggered by the pump beam. In order to analyze the 2D δR(ω,t)
Req(ω) matrix,

different approaches are feasible. For example, one can model the reflectivity variation at a fixed delay time t̃, i.e.,
δR(ω,t̃)
Req(ω) , and describe the entire 2D map as the result of the temporal variation of some parameters used to describe the
spectral response [3]. However, this approach turns out to be difficult to apply when the response of the sample cannot
be described as a single component. In order to determine how many components contribute to the full δR(ω,t)

Req(ω) matrix,
we adopt a method based on the singular value decomposition (SVD) analysis. This method has been previously used
to study the interplay between the non-equilibrium dynamics of the pseudogap and the superconducting phases in
YBi2212 [4]. It can be shown that a generic m × n matrix, M, can be factorized in the form M = TSV where T is a
m × m unitary matrix, S is a non negative m × n diagonal matrix which contains the singular values (in decreasing
order with increasing row number) and V is a n × n matrix. This factorization is such that the jth column of T
and the jth row of V contain, respectively, the trace in the temporal and spectral domains corresponding to the jth

singular value of the S matrix. The SVD LAPACK routine is used to compute the decomposition and to extract the
principal components (singular values) which contribute to the overall optical response. It is worth to stress that,
since the eigenvalues of the S matrix are non-degenerate, the SVD decomposition is unique i.e. it is always possible
to find for each singular value a unique couple of temporal and spectral eigenvectors. Using SVD, the experimental
δR(ω,t)
Req(ω) matrix can be written as:

δR(ω, t)
Req(ω)

=
∑

j

kjΨj(ω) ⊗ δφj(t) (1)

where kj is the jth singular value while Ψj(ω) and δφj(t) are the corresponding jth spectral and temporal eigen-
vectors. The results of the SVD analysis on the Y-Bi2212UD spectral and temporal response are reported in Fig. S1.
The main outcome of this analysis is that the first eigenvalue alone accounts for more than 97 % of the global re-
sponse. This result can be appreciated by comparing the raw data with the matrix δR

R 1
built as the outer product

between the first temporal and spectral eigenvectors, weighted by the first singular value ( δR
R 1

= k1Ψ1(ω) ⊗ δφ1(t)),
reported respectively in Fig. S1a and b. Both the temporal and spectral behavior is perfectly reproduced by the first
temporal and energy eigenvector as shown in Fig. S1c and d. The weights of the singular values, normalized to the
unity, are reported in Fig. S1e: the weight of the eigenvalues αj , with j > 1, are multiplied by ten to emphasize
the difference with respect to the first one. In order to highlight the uniqueness of the SVD factorization and the
effectiveness of the approximation with only the first component, the matrix of the temporal and spectral traces
are rotated by the same angle θ and a new matrix δR

R 1
(θ) is computed as the outer product of the rotated vectors:

δR
R 1

(θ) = k1R(θ)Ψ1(ω) ⊗ δφ1(t)R(θ) where R(θ) is the rotation matrix. The mean-square deviation between the
experimental data δR(ω,t)

R(ω) and the computed matrix δR
R 1

(θ) is:

σ(θ) =

√
∑

i,j

(
δR(ω,t)
R(ω) i,j

− δR
R 1i,j

)2

√
∑

i,j

(
δR(ω,t)
R(ω) i,j

)2
(2)

and it is reported in Fig. S1f for different values of θ. σ(θ) displays a minimum for θ=0 and it increases for any
kind of rotation of the eigenvectors, indicating that δR

R 1
is the best approximation of the experimental matrix.

II. TRANSIENT REFLECTIVITY MEASUREMENTS AT LOW TEMPERATURE

Transient reflectivity measurements on Y-Bi2212UD single crystal are carried out at low temperature in a liquid
nitrogen cryostat. The minimum temperature achievable in the cryostat is about 100 K. The temperature of the
sample is monitored by a thermocouple placed on the sample holder. The high temporal resolution (below 20 fs)

3

is preserved by using a very thin (200 µm) UV fused silica small flange as optical access to the cryostat. The first
temporal eigenvectors δφ1(t) extracted by the SVD analysis of the experimental matrices at different temperatures, are
reported in Fig. S2b. All the time traces do not display any change in the dynamics in the 100 K-300 K temperature
range reaching the maximum variation at the same delay time (≈40 fs) as shown in Fig. S2c.

III. EXTENDED DRUDE MODEL AND SCATTERING RATE

A. Equilibrium optical response

The equilibrium reflectivity Req(ω), measured by spectroscopic ellipsometry [5], is reported in Fig. 1a (continuum
line) of the main text for the Y-Bi2212UD sample (hole doping p=0.13, Tc=83 K). Req(ω) is related to the complex
equilibrium dielectric function ϵ(ω) by:

Req(ω) =

∣∣∣∣∣
1 −

√
ϵ(ω)

1 +
√

ϵ(ω)

∣∣∣∣∣

2

(3)

where ϵ(ω) = 1 + i4πσ(ω)
ω . A model dielectric function, σ(ω) = σD(ω) +

∑
i σLi(ω), which combines the Extended

Drude term (see main text) and a sum of Lorentz oscillators centered at energies ≈1.5, 2, 2.7 eV (σLi(ω)), that

FIG. 1: a) Transient reflectivity variation of Y-Bi2212UD. b) Time-frequency matrix calculated as the outer
product between Ψ1(ω) and δφ1(t) multiplied by the first singular value k1 c) Energy trace at t=40 fs, corre-
sponding to the maximum variation of the transient signal, (orange dots) and the first spectral eigenvector
(black line) Ψ1(ω) multiplied by δφ1(t=40 fs) and k1 d) Time trace at !ω=1 eV displayed with the first temporal
eigenvector δφ1(t) weighted by Ψ1(ω=1 eV) and k1. For graphical reasons, δφ1(t) has been offset. e) Weights

αj of the singular values normalized to one (αj =
k2

jP
j k2

j
) and sorted in decreasing order f) σ(θ), defined in Eq.

S2, computed for different value of the rotation angle θ.
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Req(ω) matrix,

different approaches are feasible. For example, one can model the reflectivity variation at a fixed delay time t̃, i.e.,
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spectral response [3]. However, this approach turns out to be difficult to apply when the response of the sample cannot
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product between Ψ1(ω) and δφ1(t) multiplied by the first singular value k1 c) Energy trace at t=40 fs, corre-
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account for the interband transitions in the visible range, is used to reproduce the experimental dielectric function
over the 0-3.5 eV energy range. The bare plasma frequency resulting from the fit is ωp=2.3 eV, in agreement with
the values from the literature for similar systems close to the optimally doped level [7].

A direct expression of the Extended Drude Model (EDM) scattering rate, γ(ω, T ), in terms of the electron-boson
coupling I2χ(Ω) can be derived from the Kubo formula of the optical conductivity in the framework of the electron-
boson Holstein theory [6]. In this case, the electron self energy, Σ(ω, T ), can be calculated as a convolution integral
between I2χ(Ω) and a kernel function L(ω, Ω, T ):

Σ(ω, T ) =
∫ ∞

0
I2χ(Ω)L(ω, Ω, T )dΩ (4)

where the kernel function can be calculated analytically and it has the following expression:

L(ω, Ω; T ) = −2πi

[
n(Ω, T ) +

1
2

]
+ Ψ

(
1
2

+ i
Ω − ω

2πT

)
− Ψ

(
1
2
− i

Ω + ω

2πT

)
(5)

It is worth to note that the kernel function describes the thermal excitation of both the bosonic modes through the
Bose-Einstein distribution n(Ω, T ), and the electronic carriers through the terms containing the digamma functions
Ψ. Consequently, in the first term of eq. 5, T is the temperature of the bosonic excitations while, in the rest of the
formula, is the temperature of the electronic carriers. For moderately doped systems, in which the vertex corrections
can be omitted, the optical scattering rate is related to the single-particle self-energy by:

γ(ω, T ) = Im

{
ω

[∫ +∞

−∞

f(ξ, T ) − f(ξ + ω, T )
ω + Σ∗(ξ, T ) − Σ(ξ + ω, T )

dξ

]−1

− ω

}
(6)

where f is the Fermi-Dirac distribution, Σ(ω, T ) and Σ∗(ω, T ) the electron and hole k-space averaged self-energies.
The bosonic glue, extracted from the fit to the equilibrium dielectric function, extends up to ≈300 meV, and displays

a narrow peak at ≈70 meV. A more detailed description of the I2χ(Ω) spectrum can be found in Refs. [5, 7, 8]. The
scattering rate calculated from Eq. S6 is reported in Fig. S3 and displays a variation of about 10 % in the entire probe
energy window. Because of the weak energy dependency of γ(ω), in the 0.7-1.5 eV energy range, the equilibrium
reflectivity can be reasonably described in this spectral region by the asymptotic value γ∞ as it is shown in the inset
of Fig. S3.

FIG. 2: Temporal dynamics of δφ1(t) eigenvectors at different temperatures. The black lines are the fit to the
data. The fitting function takes into account the experimental resolution, as described more extensively in
the main text. The values of the build-up time τr at different temperatures are reported in Fig. 1f of the
manuscript. In the inset the dynamics at short delay times clearly show that the rise time of the temporal
traces does not depend on the temperature.

5

B. Non-equilibrium optical response and the isosbestic point

In time-resolved experiments, the pump pulse drives the system out of equilibrium while a second broadband probe
pulse monitors the transient change of the dielectric function. In general, the relaxation dynamics can follow two
different relaxation pathways. In the first scenario, the pump energy is absorbed by a small fraction of the charge
carriers which scatter with the other unexcited carriers and relax on a very short timescale towards a Fermi-Dirac
distribution characterized by a temperature higher than that the equilibrium. One can rationalize this process in
term of a sudden increase of the electronic temperature (δTe >0) while the bosonic bath is essentially unchanged
(δTb =0). In the second scenario, the excited carriers mainly release the excess energy through scattering with the
bosonic modes. In terms of the effective temperature models, this picture implies that δTe ≃ δTb at all the timescales
longer than the single electron-boson scattering process. The rapid increase of the bosonic excitations results, in turn,
in the increase of the optical scattering rate (δγ∞ >0), which can be detected under the form of a broadening of the
Drude peak.

As it was already demonstrated (see Fig. 1 in [5]), the two physical scenarios previously sketched, result in a
dramatically different reflectivity variation in the frequency domain. In Fig. 1 of the manuscript we demonstrate that
the experimental δR(ω,t) is reproduced by assuming an increase of δγ∞ on a extremely short time scale (<50 fs). No
signature of the electronic carriers decoupled from the bosonic degrees of freedom has been revealed. These results
are compatible only with the second scenario, in which the charge carriers mainly exchange energy with the bosonic
bath. Therefore, we can assume that δR(t)∝ δγ∞(t).

Having clarified how the transient reflectivity reveals the dynamics of the energy stored in the bosonic bath, we focus
now on the non-equilibrium optical response around the isosbestic point. In particular, it can be shown that all the
reflectivity curves corresponding to different scattering rates cross each other at a precise frequency ω̃ ≈1.1 eV, which
is called isosbestic point. The physical properties of the isosbestic points are discussed in a recent work [12]. Across
an isosbestic point a physical quantity f(ω, g) can be locally approximated by an expansion of a generic parameter
g around some particular value g0. In this specific case, for a small variation of the scattering rate, the following
expansion of the reflectivity holds:

R(ω, γ) = R(ω, γ0) +
∂R

∂γ
(γ − γ0) + O

[
(γ − γ0)2

]
(7)

The effect of the pump pulse, in a pump-probe experiment, is to transiently perturb the optical properties of the
system. In Fig. 1 of the main text we show that δR(ω,̃t)/Req(ω) changes sign from negative to positive at the frequency
corresponding to ω̃. The major point of the analysis is that the build up dynamics of δR(ω,̃t)/Req(ω), immediately
after the pump excitation, can be reproduced solely by assuming a transient increase of the electron-boson scattering
rate. This result can be quantitatively expressed in terms of the variation of γ∞. The maximum transient signal,

FIG. 3: Energy dependence of the scattering rate at T=300 K in the probe spectral range. γ∞ is the asymptotic
value of the scattering rate. In the inset the EDM fit to static reflectivity (black line) is compared with
the calculated reflectivity (red line) under the frequency independent approximation of the damping term:
γ(ω) = γ∞.
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occurring at a delay time of ≈40 fs for Y-Bi2212UD, is equivalent to a relative variation δγ∞
γ∞

≈1 %. Therefore Eq. S7
can be reformulated in this way:

δR(ω, t)
Req(ω)

≈ 1
Req(ω)

∂R(ω)
∂γ∞

δγ∞(t). (8)

Comparing Eqs. S7 and S8, we can easily identify the dynamics of the scattering rate variation δγ∞(t) with the
first temporal eigenvalue obtained through the SVD δφ1(t).

To further support the interpretation of the experimental results solely as a change of the scattering rate, the
non-linear optical response is measured in the visible-UV range between 1.8 eV to 2.4 eV using chirped-mirrors
compressed pulses in a degenerate configuration (both pump and probe pulses are generated by NOPA 3). In this
energy region the high energy tail of the Drude peak overlaps with the interband optical transitions. In particular,
a weak additional Lorentz oscillator (LO) at ≈1.5 eV and a more intense one at ≈2 eV are necessary to reproduce
the equilibrium dielectric function. The peak at 2 eV is usually interpreted as the reminiscence of the charge transfer
(CT) edge in the undoped compound, arising from the excitation of an hole from the upper Hubbard band to the
oxygen 2px,y orbital, and it should be particularly sensitive to rearrangements of the oxygen orbitals. Fig. S4 shows
that the first eigenfunction (Ψ1(ω)) of the SVD of the δR(ω,t)/Req(ω) matrix can be reproduced by assuming an
ultrafast broadening of the Drude peak, i.e., δγ∞>0. This result rules out any possible variation of the position of
the oxygen orbitals during the ultrafast relaxation process, since the transient variation of the parameters of the CT
peak would provide a narrow reflectivity variation around 2 eV, incompatible with the measured monotonic variation
of the reflectivity.

C. Magnesium diboride

The MgB2 transient reflectivity is reported in Fig. S5a and is factorized by the SVD. Analogously to Y-Bi2212UD,
the MgB2 non-equilibrium optical response is entirely described by the first temporal and spectral eigenvectors as
shown in Fig. S5b. The temporal eigenvector δφj(t) perfectly overlaps with the experimental temporal traces (Fig. S5c)
proving the reliability of the description of the experimental matrix in term of the highest weight eigenvectors. Despite
its high Tc, it is generally accepted that in MgB2, the Cooper pair formation is mediated by optical phonons at 70 meV

FIG. 4: The experimental equilibrium optical conductivity (grey dots) together with the Drude and charge
transfer peak resulting from the fit of the equilibrium optical conductivity (red and the green lines). The first
eigenvalue obtained from the SVD analysis is reported (yellow dots). The trace extending between 0.7 and
1.5 eV is the one previously reported in Fig. 1 of the main text. The trace extending between 1.8 eV and
2.4 eV results from the SVD analysis of the Y-Bi2212UD transient response probed by NOPA 3. The black
line is the best fit obtained by increasing the total scattering rate.

7

energy, while electronic correlations are expected to play a minor role. The MgB2 equilibrium reflectivity along the ab
plane displays a broad plasma edge at a frequency that is blue-shifted (≈2 eV) as compared to Y-Bi2212UD. Moreover
an additional Lorentz peak at ≈2.6 eV is also observed in the visible-UV optical range [9] due to the σ → π transition
close to the M point of the Brillouin zone. Transient modifications of this interband transition are expected to occur
on an energy scale larger than the probe spectral window and are not expected to influence the non equilibrium
response. In Fig. S5e the MgB2 equilibrium reflectivity (black line) and the reflectivity obtained by increasing the
scattering rate (dashed line) in the EDM that reproduces the equilibrium optical data are reported. Also in this
case, the transient response, reported in Fig. S5b of the main text, can be rationalized as a broadening of the Drude
peak, i.e., an increase of the scattering rate. The γ∞(t) curve for MgB2 shows a build-up time, τr=32±3 fs, that is
significantly larger than that observed on cuprates. This physical process is related to the thermalization with the
optical bond stretching phonons at 70 meV, which display a high coupling strength and are considered at the origin
of the high Tc of MgB2[13].

FIG. 5: a,b) MgB2 transient reflectivity variation compared with the matrix calculated as the outer product
between Ψ1(ω) and δφ1(t) multiplied by the first singular value k1 c) Time trace at !ω=1.3 eV displayed with
the first temporal eigenvector δφ1(t) weighted by Ψ1(ω=1.3 eV) and k1 d) Weights αj of the singular values

normalized to one (αj =
k2

jP
j k2

j
) and sorted in decreasing order e) MgB2 in plane static reflectivity measured at

T=300 K (black line) and the static reflectivity calculated within the framework of the EDM by simulating
an increase of the scattering rate (dashed line).
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IV. TEMPORAL RESOLUTION

As it was extensively discussed in the manuscript, the build-up dynamics of γ∞(t) is strictly related to the time scale
on which the charge carriers exchange their excess energy with short range antiferromagnetic excitations. Therefore,
the experimental temporal resolution is a crucial parameter to obtain a precise measurements of the intrinsic time
scale of this process. To characterize the temporal resolution of the experiment, the pump and the probe pulses are
sent through a 20 µm thick BBO crystal and the spectrum of the sum-frequency generated is detected at different
delays. The small thickness of the non linear crystal minimizes the temporal broadening and guarantees a broadband
phase matching for all the spectral components of the two pulses. The cross-correlation frequency resolved optical
gating (XFROG) trace, i.e. the sum frequency spectrum vs the pump-probe delay, is reported in Fig. S6. The width
of the cross correlation trace at different wavelengths (λXFROG) sets the effective temporal resolution of the transient
response at a given probe wavelength (λprobe), according to the energy conservation condition for the sum frequency
process ( 1

λXF ROG
= 1

λprobe
+ 1

λpump
). In Fig. S6 we report a single time-trace at fixed wavelength, i.e., λprobe=930 nm.

Since the pump spectrum is centered at λpump=590 nm, the time-trace at λprobe=930 nm has to be compared to
the cross-correlation trace at λXFROG=360 nm whose temporal width ∆τXFROG is estimated to be 19±2 fs. The
rise-time of the time trace is longer than the convolution (grey line) between the FROG trace (XFROG) and an
Heaviside function (H), indicating a finite delay in the maximum variation of δR(ω,t)/Req(ω).

FIG. 6: a) Spectrum of the pump (OPA3) and the probe (OPA2) pulses; b) Measured XFROG trace; c) Cutoff
of the XFROG trace taken at the maximum of the signal (360 nm); d) Transient reflectivity at λprobe=930 nm
(blue dots), fit of the data (black line), convolution between Heaviside function H and the XFROG trace at
IXFROG (grey line).

V. RELAXATION DYNAMICS IN THE t-J MODEL

A. Finite-size scaling

We now describe the procedure adopted to extract the relaxation time from real-time numerical simulations of the
t-J model far from equilibrium. We perform a finite-size scaling with respect to the parameter Nh (see Methods)
which defines the size of the functional space. For a fixed value of Nh, we extract the relaxation time τ(Nh) from the
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time evolution of the kinetic energy ∆Ekin(t) of a photo-excited hole. We show ∆Ekin(t) for different Nh in Fig. S7a.
Once τ(Nh) is obtained, we extrapolate τ∞ = τ(Nh → ∞) with respect to the scaling with 1/Nh. This procedure
is analogous to the finite-size scaling in the conventional exact diagonalization where the size of the Hilbert space
is determined by the lattice size L. In both cases, Hilbert spaces grow exponentially with either Nh or L. In the
following, we fix the parameter values to the ones discussed in the main part of the manuscript, i.e, we set J/th = 0.3,
Nbox = 4 (defining the spatial extend of local antiferromagnetic excitations; see Methods) and the initial quench
energy ∆Ekin = 2 eV.

We obtain the relaxation time from two independent and partially complementary procedures. We start with a
simple exponential fit f1(t) = A exp (−t/τ (1)) of the kinetic energy of the photo-excited hole. This is consistent
with the fitting procedure of the experimental data for δγ∞(t), shown in Fig. 1 of the main part of the manuscript.
However, some care is required when fitting the numerical data with this ansatz. The ansatz is clearly not correct in
the very first stage of relaxation, i.e., in the time of the order of a single hopping process, t ∼ 1 fs. In addition, in the
asymptotic limit where the majority of the kinetic energy is already released to local antiferromagnetic excitations,
a finite functional space limits the spreading of these excitation through the plaquette, as seen for different values of
∆Ekin(t) around t ∼ 20 fs in Fig. S7a. We therefore calculate in Fig. S7b the function τ(t) = −∆Ekin(t)/∆Ėkin(t),
which gives an instantaneous relaxation time. In the case of the exponential function f1(t), it simply gives τ(t) = τ (1).
Remarkably, we observe a plateau of τ(t) in the time interval 2 fs < t < 10 fs in Fig. S7b, which indicates that a
large part of the relaxation process can be to a very good approximation described by a simple exponential function.
The time-independent regime of τ(t) in Fig. S7b can only be detected for large functional spaces (obtained for
Nh = 13, 14, 15, 16), which contain over 106 states. Most importantly, the regime of exponential relaxation with
τ(t) = const extends to longer times for larger values of Nh. The values of τ (1)(Nh) obtained from the plateau of τ(t)
are shown in Fig. S7c (circles). In the latter Figure, the linear extrapolation with respect to 1/Nh provides a very
accurate fit for the available data and yields τ (1)

∞ = 14.6 fs.
We complement the fitting procedure with a fitting function f2(t) = A0 exp (−

√
at2 + b2 + b), which, unlike f1(t),

also captures the time evolution of the kinetic energy at the very short time, of the order of t ∼ 1 fs. Moreover, it
obeys the time-reversal symmetry of the investigated quantum-mechanical system [14]. It gives ḟ2(t) = 0 at t = 0,
consistent with our numerical data, as well as it describes a simple exponential decay f2(t) ∼ exp (−t/τ (2)) at long
times, where τ (2) = 1/

√
a. We cut the numerical data at the time t∗ when τ(t) starts to deviate from the plateau

shown in Fig. S7b, which depends on Nh and occurs typically between t∗ ∈ [6 fs, 8 fs]. The rest of the data is then
fitted by f2(t). The resulting values of τ (2) = 1/

√
a are shown as diamonds in Fig. S7c. We again extrapolate τ (2)

with respect to 1/Nh for large functional spaces which contain over 106 states (solid line in Fig. S7c) and we get
τ (2)
∞ = 14.1 fs.
In both fitting procedures described above, the values of τ (1)

∞ and τ (2)
∞ are quantitatively very similar. We therefore

take τtJ = 15 fs throughout the manuscript to quantify the relaxation time in the t-J model. In addition, even the
bare relaxation time obtained for a large but finite Hilbert space (τ = 9 fs for Nh = 16) yields the characteristic
relaxation time scale of the order of 10 femtoseconds. This extremely fast relaxation due to the charge-spin interaction
is the main message of our numerical simulations.
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FIG. 7: a) Kinetic energy of a photo-excited hole, ∆Ekin(t), for different sizes of the functional space, given
by the parameter Nh. b) The function τ(t) = −∆Ekin(t)/∆Ėkin(t), where ∆Ėkin(t) denotes time-derivative, for
the same system sizes. Horizontal dashed line indicates the plateau for Nh = 16 where τ(t) becomes time-
independent. c) τ vs 1/Nh for two different fitting procedures. In Fit 1, we extract τ (1)(Nh) from a time-
independent plateau of τ(t), as indicated in panel b). In Fit 2, we extract τ (2)(Nh) from a fitting function
f2(t) = A0 exp (−

√
at2 + b2 + b). Details are described in the main text. Both fitting procedures yield a very

similar relaxation time, τtJ ≈ 15 fs. Dotted lines represent extrapolation for Fit 1, with fitting parameters
shifted by 3 standard deviations relative to the mean values.
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IV. TEMPORAL RESOLUTION

As it was extensively discussed in the manuscript, the build-up dynamics of γ∞(t) is strictly related to the time scale
on which the charge carriers exchange their excess energy with short range antiferromagnetic excitations. Therefore,
the experimental temporal resolution is a crucial parameter to obtain a precise measurements of the intrinsic time
scale of this process. To characterize the temporal resolution of the experiment, the pump and the probe pulses are
sent through a 20 µm thick BBO crystal and the spectrum of the sum-frequency generated is detected at different
delays. The small thickness of the non linear crystal minimizes the temporal broadening and guarantees a broadband
phase matching for all the spectral components of the two pulses. The cross-correlation frequency resolved optical
gating (XFROG) trace, i.e. the sum frequency spectrum vs the pump-probe delay, is reported in Fig. S6. The width
of the cross correlation trace at different wavelengths (λXFROG) sets the effective temporal resolution of the transient
response at a given probe wavelength (λprobe), according to the energy conservation condition for the sum frequency
process ( 1

λXF ROG
= 1

λprobe
+ 1

λpump
). In Fig. S6 we report a single time-trace at fixed wavelength, i.e., λprobe=930 nm.

Since the pump spectrum is centered at λpump=590 nm, the time-trace at λprobe=930 nm has to be compared to
the cross-correlation trace at λXFROG=360 nm whose temporal width ∆τXFROG is estimated to be 19±2 fs. The
rise-time of the time trace is longer than the convolution (grey line) between the FROG trace (XFROG) and an
Heaviside function (H), indicating a finite delay in the maximum variation of δR(ω,t)/Req(ω).

FIG. 6: a) Spectrum of the pump (OPA3) and the probe (OPA2) pulses; b) Measured XFROG trace; c) Cutoff
of the XFROG trace taken at the maximum of the signal (360 nm); d) Transient reflectivity at λprobe=930 nm
(blue dots), fit of the data (black line), convolution between Heaviside function H and the XFROG trace at
IXFROG (grey line).
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We now describe the procedure adopted to extract the relaxation time from real-time numerical simulations of the
t-J model far from equilibrium. We perform a finite-size scaling with respect to the parameter Nh (see Methods)
which defines the size of the functional space. For a fixed value of Nh, we extract the relaxation time τ(Nh) from the
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time evolution of the kinetic energy ∆Ekin(t) of a photo-excited hole. We show ∆Ekin(t) for different Nh in Fig. S7a.
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following, we fix the parameter values to the ones discussed in the main part of the manuscript, i.e, we set J/th = 0.3,
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energy ∆Ekin = 2 eV.
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the very first stage of relaxation, i.e., in the time of the order of a single hopping process, t ∼ 1 fs. In addition, in the
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also captures the time evolution of the kinetic energy at the very short time, of the order of t ∼ 1 fs. Moreover, it
obeys the time-reversal symmetry of the investigated quantum-mechanical system [14]. It gives ḟ2(t) = 0 at t = 0,
consistent with our numerical data, as well as it describes a simple exponential decay f2(t) ∼ exp (−t/τ (2)) at long
times, where τ (2) = 1/
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take τtJ = 15 fs throughout the manuscript to quantify the relaxation time in the t-J model. In addition, even the
bare relaxation time obtained for a large but finite Hilbert space (τ = 9 fs for Nh = 16) yields the characteristic
relaxation time scale of the order of 10 femtoseconds. This extremely fast relaxation due to the charge-spin interaction
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FIG. 7: a) Kinetic energy of a photo-excited hole, ∆Ekin(t), for different sizes of the functional space, given
by the parameter Nh. b) The function τ(t) = −∆Ekin(t)/∆Ėkin(t), where ∆Ėkin(t) denotes time-derivative, for
the same system sizes. Horizontal dashed line indicates the plateau for Nh = 16 where τ(t) becomes time-
independent. c) τ vs 1/Nh for two different fitting procedures. In Fit 1, we extract τ (1)(Nh) from a time-
independent plateau of τ(t), as indicated in panel b). In Fit 2, we extract τ (2)(Nh) from a fitting function
f2(t) = A0 exp (−

√
at2 + b2 + b). Details are described in the main text. Both fitting procedures yield a very

similar relaxation time, τtJ ≈ 15 fs. Dotted lines represent extrapolation for Fit 1, with fitting parameters
shifted by 3 standard deviations relative to the mean values.
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B. The role of a direct carrier-carrier interaction in the lower Hubbard band

Motivated by the extremely low density of the photo-excited carriers (shortly carriers) we have so far studied
a single carrier in the t-J model, thus neglecting carrier-carrier interactions (see the discussion in Methods). In
this subsection we provide an additional support for this picture and explicitly show that this interaction does not
influence the ultrafast relaxation of highly excited carriers at least for parameters which are relevant for the present
experiment. The direct interaction between carriers in the lower Hubbard band is already captured in the original
t-J model, however it is not obvious how to single out effects originating solely from this interaction. The first-
guess solution to this problem would be to study how the relaxation dynamics depends on the concentration of
carriers. Unfortunately such an approach, apart from being technically very demanding, would also be conceptually
unjustified. Changing the carrier concentration namely modifies the magnetic background that consequently influences
the coupling between carriers and the magnetic excitations. In order to overcome this problem we have extended the
original t-J Hamiltonian by an additional term describing a direct carrier-carrier interaction with a potential V ,

HtJ → HtJV = HtJ + V
∑

⟨i,j⟩

ñiñj , (9)

where the t-J Hamiltonian HtJ as well as the electron-number operator ñj have been explained in Eq. (1) of Methods.
After such an extension the interaction between a carrier and magnetic excitations still depends only on J , while the
carrier-carrier interaction can be tuned by changing either J or V [15]. Below we demonstrate that for a fixed J
the relaxation dynamics barely depends on V , indicating that the strength of the carrier-carrier interaction has no
significant influence on the relaxation time. It is important to stress that we do not assign any physical relevance
to the additional interaction term in Eq. (9). It should only be considered as an auxiliary interaction introduced to
establish the experimental relevance of results obtained for a single charge carrier in the t–J model.

Figure 8 shows the relaxation of the kinetic energy for two charge carriers propagating on 4×4 and 6×4 plaquettes
solved by exact diagonalization (ED). Note that the carrier concentration in the former case is close to the hole
concentration in the optimally doped cuprates. We use ED since the two-carrier system on larger plaquettes solved by
diagonalization in the limited functional space converges much slower than the corresponding single-carrier system.
As discussed in the Methods, clusters with N < 30 sites solved by ED represent too small systems to account for a
complete relaxation within the experimental conditions, and therefore the relaxation times should not be compared
quantitatively to the data shown in Fig. 7. Nevertheless, the main message from the results in Fig. 8 does not concern
the quantitative results for the relaxation time but it rather tests the sensitivity of the relaxation time on the coupling
between carriers as modeled by V . We have computed the relaxation dynamics in the presence of attractive as well
as repulsive potential V with a magnitude that is sufficiently large to overcome the carrier-carrier interaction present
in the original t–J model. Results are quite independent of V , and different panels in Fig. 8 demonstrate that the
same behavior persists for various sizes of the clusters. We thus conclude that the direct carrier-carrier interaction
in the lower Hubbard band has a inconsequential influence on the ultrafast primary relaxation in the time-window
t ! 15 fs. However, we expect that this interaction may become important for larger doping (and in particular for
large fluence), when magnetic correlations diminish while the density of carriers becomes larger. Finally we stress
that the direct carrier-carrier interaction between particles in the lower Hubbard band should not be confounded with
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FIG. 8: Kinetic energy ∆Ekin(t)/∆Ekin(t=0) in the system of two carriers, for different values of the direct
carrier-carrier interaction V , see Eq. (9). The other parameters are the same as in Fig. 2 of the main text,
i.e., J/th = 0.3, th = 360 meV and ∆Ekin(t = 0) = 2 eV. Results have been obtained by exact diagonalization on
a) 4×4 and b) 6×4 square lattice using periodic boundary conditions.
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the original Hubbard repulsion U in the full (unprojected) Hilbert space, since the latter interaction is actually the
physical origin behind the coupling between the charge carriers and the antiferromagnetic fluctuations.

VI. DYNAMICAL MEAN-FIELD THEORY (DMFT)

The role of short-range AF correlations as the effective bosons mediating the electron dynamics in doped cuprates is
also supported by the Dynamical Mean Field Theory (DMFT) solution of the Hubbard model [16]. Even if an accurate
characterization of the phase diagram of the copper-oxide planes of the cuprates requires cluster extensions of DMFT
[17], the single-site DMFT accurately reproduces the evolution of the optical spectral weight as a function of both
doping [18, 19] and temperature [20]. We consider a two-dimensional Hubbard model with t=0.25 eV, t′=-0.05 eV and
U=3eV, and we solve the local quantum dynamics using finite-temperature exact diagonalization [21] approximating
the bath with 8 levels. The frequency-dependent optical conductivity is directly obtained from the knowledge of the
single particle Green’s functions and of the current vertex. Using DMFT, we calculate the temperature-dependent
optical conductivity, σ(ω, T ), of a hole-doped material whose properties are assumed to be described by a generic
single-band Hubbard model. DMFT is used to compute σ(ω, T ), shown in Fig. S9a, fully retaining both the physics
of the high-energy transitions at the energy U and that of the short-range antiferromagnetic correlations at the energy
scale J . At an intermediate hole concentration (p=0.16), σ(ω, T ) is characterized by a broad Drude-like part (!ω<2.4
eV) and distinct interband transitions in the 2.4-4.2 eV energy range, that account for the localized excitations from
the lower to the upper Hubbard band. As shown in Fig. S9a, the main effect of a temperature increase from 250 K
(black line) to 400 K (red line) is the overall broadening of the Drude peak with almost no change of spectral weight
at the energy U . Quantitatively, this is shown by calculating the finite-cutoff spectral weight, i.e.:

SW (Ωc, T ) =
∫ Ωc

0
Reσ(ω, T )dω (10)

as a function of the temperature T . In the simplest version of the Drude model, in which the scattering rate is
frequency-independent, the approximation:

SW (Ωc, T ) ≃
ω2

p

8

[
1 − 2
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πΩc

]
(11)
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FIG. 9: a) The optical conductivity of the single band Hubbard Model calculated by DMFT is reported for
T=250 and 400 K and U=3 eV. A broad Drude peak extends up to 2.4 eV, whereas the optical proper-
ties are dominated by interband transitions at the U energy scale. b) The relative variation of the optical
spectral weight, i.e., ∆SW/SW=SWi(Ωc,T )-SWi(Ωc,250K)/SW(Ωc,250K), as a function of the temperature T .

The temperature-dependent intraband spectral weight SWi(2.4 eV,T )=
R 2.4eV

0
Reσi(ω, T )dω is calculated for the

DMFT optical conductivity (i=DMFT, red dots) and for an extended Drude model (i=D). The interband

spectral weight is calculated as the difference between SWint
DMFT(T )=

R 4.2eV

2.4eV
ReσDMFT(ω, T )dω and the intrinsic

spectral weight of the underlying Drude tail, i.e., SWint
D (T )=

R 4.2eV

2.4eV
ReσD(ω, T )dω.
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Motivated by the extremely low density of the photo-excited carriers (shortly carriers) we have so far studied
a single carrier in the t-J model, thus neglecting carrier-carrier interactions (see the discussion in Methods). In
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establish the experimental relevance of results obtained for a single charge carrier in the t–J model.
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solved by exact diagonalization (ED). Note that the carrier concentration in the former case is close to the hole
concentration in the optimally doped cuprates. We use ED since the two-carrier system on larger plaquettes solved by
diagonalization in the limited functional space converges much slower than the corresponding single-carrier system.
As discussed in the Methods, clusters with N < 30 sites solved by ED represent too small systems to account for a
complete relaxation within the experimental conditions, and therefore the relaxation times should not be compared
quantitatively to the data shown in Fig. 7. Nevertheless, the main message from the results in Fig. 8 does not concern
the quantitative results for the relaxation time but it rather tests the sensitivity of the relaxation time on the coupling
between carriers as modeled by V . We have computed the relaxation dynamics in the presence of attractive as well
as repulsive potential V with a magnitude that is sufficiently large to overcome the carrier-carrier interaction present
in the original t–J model. Results are quite independent of V , and different panels in Fig. 8 demonstrate that the
same behavior persists for various sizes of the clusters. We thus conclude that the direct carrier-carrier interaction
in the lower Hubbard band has a inconsequential influence on the ultrafast primary relaxation in the time-window
t ! 15 fs. However, we expect that this interaction may become important for larger doping (and in particular for
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physical origin behind the coupling between the charge carriers and the antiferromagnetic fluctuations.
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also supported by the Dynamical Mean Field Theory (DMFT) solution of the Hubbard model [16]. Even if an accurate
characterization of the phase diagram of the copper-oxide planes of the cuprates requires cluster extensions of DMFT
[17], the single-site DMFT accurately reproduces the evolution of the optical spectral weight as a function of both
doping [18, 19] and temperature [20]. We consider a two-dimensional Hubbard model with t=0.25 eV, t′=-0.05 eV and
U=3eV, and we solve the local quantum dynamics using finite-temperature exact diagonalization [21] approximating
the bath with 8 levels. The frequency-dependent optical conductivity is directly obtained from the knowledge of the
single particle Green’s functions and of the current vertex. Using DMFT, we calculate the temperature-dependent
optical conductivity, σ(ω, T ), of a hole-doped material whose properties are assumed to be described by a generic
single-band Hubbard model. DMFT is used to compute σ(ω, T ), shown in Fig. S9a, fully retaining both the physics
of the high-energy transitions at the energy U and that of the short-range antiferromagnetic correlations at the energy
scale J . At an intermediate hole concentration (p=0.16), σ(ω, T ) is characterized by a broad Drude-like part (!ω<2.4
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(black line) to 400 K (red line) is the overall broadening of the Drude peak with almost no change of spectral weight
at the energy U . Quantitatively, this is shown by calculating the finite-cutoff spectral weight, i.e.:
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γ(T )
πΩc

]
(11)
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FIG. 9: a) The optical conductivity of the single band Hubbard Model calculated by DMFT is reported for
T=250 and 400 K and U=3 eV. A broad Drude peak extends up to 2.4 eV, whereas the optical proper-
ties are dominated by interband transitions at the U energy scale. b) The relative variation of the optical
spectral weight, i.e., ∆SW/SW=SWi(Ωc,T )-SWi(Ωc,250K)/SW(Ωc,250K), as a function of the temperature T .

The temperature-dependent intraband spectral weight SWi(2.4 eV,T )=
R 2.4eV

0
Reσi(ω, T )dω is calculated for the

DMFT optical conductivity (i=DMFT, red dots) and for an extended Drude model (i=D). The interband

spectral weight is calculated as the difference between SWint
DMFT(T )=

R 4.2eV

2.4eV
ReσDMFT(ω, T )dω and the intrinsic

spectral weight of the underlying Drude tail, i.e., SWint
D (T )=

R 4.2eV

2.4eV
ReσD(ω, T )dω.
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is valid in the limit Ωc≫γ. Therefore, the temperature dependance of SW(Ωc,T ) directly reflects that of γ(T ). In
the Fig. S9b, we show that SW(Ω1=2.4eV,T ), calculated from the output of DMFT, is in perfect agreement with
that expected for a simple Drude model (SWD(Ω,T )), provided a suitable effective electron-boson scattering rate is
introduced. The quantity SWD(2.4 eV,T ), reported in Fig. S9b as a red line, has been obtained by replacing in
Eq. S11 the asymptotic temperature-dependent scattering rate, γ∞(T ) calculated through Eqs. S4, S5 and S6. The
bosonic function I2χ(Ω) is taken from Ref. 5. The calculated SWD(2.4 eV,T ) is robust against modifications of the
details of I2χ(Ω) in the 0-500 meV energy range. Furthermore, the slope of SW(Ω2=4.2eV,T ) exactly scales with the
ratio Ω1/Ω2 (see Eq. S11) finally demonstrating that, at sufficiently high temperatures and hole concentrations, the
dynamics of the charge carriers can be entirely described through an effective electron-boson coupling on the scale
of J (no other energy scale is present in the model), without any change of spectral weight of high-energy Mott-like
excitations at U .
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